If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7x2 + 5x + -5 = 0 Reorder the terms: -5 + 5x + 7x2 = 0 Solving -5 + 5x + 7x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. -0.7142857143 + 0.7142857143x + x2 = 0 Move the constant term to the right: Add '0.7142857143' to each side of the equation. -0.7142857143 + 0.7142857143x + 0.7142857143 + x2 = 0 + 0.7142857143 Reorder the terms: -0.7142857143 + 0.7142857143 + 0.7142857143x + x2 = 0 + 0.7142857143 Combine like terms: -0.7142857143 + 0.7142857143 = 0.0000000000 0.0000000000 + 0.7142857143x + x2 = 0 + 0.7142857143 0.7142857143x + x2 = 0 + 0.7142857143 Combine like terms: 0 + 0.7142857143 = 0.7142857143 0.7142857143x + x2 = 0.7142857143 The x term is 0.7142857143x. Take half its coefficient (0.3571428572). Square it (0.1275510204) and add it to both sides. Add '0.1275510204' to each side of the equation. 0.7142857143x + 0.1275510204 + x2 = 0.7142857143 + 0.1275510204 Reorder the terms: 0.1275510204 + 0.7142857143x + x2 = 0.7142857143 + 0.1275510204 Combine like terms: 0.7142857143 + 0.1275510204 = 0.8418367347 0.1275510204 + 0.7142857143x + x2 = 0.8418367347 Factor a perfect square on the left side: (x + 0.3571428572)(x + 0.3571428572) = 0.8418367347 Calculate the square root of the right side: 0.917516613 Break this problem into two subproblems by setting (x + 0.3571428572) equal to 0.917516613 and -0.917516613.Subproblem 1
x + 0.3571428572 = 0.917516613 Simplifying x + 0.3571428572 = 0.917516613 Reorder the terms: 0.3571428572 + x = 0.917516613 Solving 0.3571428572 + x = 0.917516613 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.3571428572' to each side of the equation. 0.3571428572 + -0.3571428572 + x = 0.917516613 + -0.3571428572 Combine like terms: 0.3571428572 + -0.3571428572 = 0.0000000000 0.0000000000 + x = 0.917516613 + -0.3571428572 x = 0.917516613 + -0.3571428572 Combine like terms: 0.917516613 + -0.3571428572 = 0.5603737558 x = 0.5603737558 Simplifying x = 0.5603737558Subproblem 2
x + 0.3571428572 = -0.917516613 Simplifying x + 0.3571428572 = -0.917516613 Reorder the terms: 0.3571428572 + x = -0.917516613 Solving 0.3571428572 + x = -0.917516613 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.3571428572' to each side of the equation. 0.3571428572 + -0.3571428572 + x = -0.917516613 + -0.3571428572 Combine like terms: 0.3571428572 + -0.3571428572 = 0.0000000000 0.0000000000 + x = -0.917516613 + -0.3571428572 x = -0.917516613 + -0.3571428572 Combine like terms: -0.917516613 + -0.3571428572 = -1.2746594702 x = -1.2746594702 Simplifying x = -1.2746594702Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.5603737558, -1.2746594702}
| 3/4x=120 | | 8x+3x+2x=39 | | .55x+.05(12-x)=.10(16) | | x+2.8=7.6 | | 3.1x=-26.04 | | 5(5x-2)+3=-3 | | 4x-32-2x-10=-52 | | (y^8)(x^18y^30)= | | -3x+-3+2x=-7 | | (10g^3j^8v^6)(11gj^8)= | | x(5x-34)=7 | | -5/12+x=1/6 | | 3m-5m-12m=7m-88-5 | | 12-6+2*3-5= | | x-9/(x-4)(x+4)=0 | | (x^2-16)-(x^2-20)=0 | | =6(x^2-18x)-24 | | g(x)=6x^2-18x-24 | | 0.8x+0.1=-1.5 | | 5/45 | | 600/7-1/9=0 | | 24(25/7)=0 | | -3+7(x-2)=12x+5-5x | | 4/10=x/(x+8) | | 24(25/7)-1/9=0 | | 24v^3w^3x^8+30v^5w^3=0 | | 4^1/3a^2b^4 | | S=(10s-3s) | | S=(46m-18m) | | 4r^4-64r^2=0 | | S=(14s-7s) | | -10-8m= |